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ABSTRACT: Monoclonal antibodies (mAbs) have found exten-
sive applications and development in treating various diseases.
From the pharmaceutical industry’s perspective, the journey from
the design and development of mAbs to clinical testing and large-
scale production is a highly time-consuming and resource-intensive
process. During the research and development phase, assessing and
optimizing the developability of mAbs is of paramount importance
to ensure their success as candidates for therapeutic drugs. The
critical factors influencing mAb development are their biophysical
properties, such as aggregation propensity, solubility, and viscosity.
This study utilized a data set comprising 12 biophysical properties
of 137 antibodies from a previous study (Proc Natl Acad Sci USA. 114(5):944—949, 2017). We employed full-length antibody
molecular dynamics simulations and machine learning techniques to predict experimental data for these 12 biophysical properties.
Additionally, we utilized a newly developed deep learning model called DeepSP, which directly predicts the dynamical and structural
properties of spatial aggregation propensity and spatial charge map in different antibody regions from sequences. Our research
findings indicate that the machine learning models we developed outperform previous methods in predicting most biophysical
properties. Furthermore, the DeepSP model yields similar predictive results compared to molecular dynamic simulations while
significantly reducing computational time. The code and parameters are freely available at https://github.com/Lailabcode/AbDev.
Also, the webapp, AbDev, for 12 biophysical properties prediction has been developed and provided at https://

devpred.onrender.com/AbDev.
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Bl INTRODUCTION

In recent years, monoclonal antibodies (mAbs) have become
widely utilized to treat diverse diseases, including cancer,
autoimmune disorders, and infectious diseases."”” As of 2022,
the global mAbs market size surpassed USD 200 billion, with
expectations of USD 300 billion by 2025.> However, developing
mAbs from initial design to FDA approval is time-consuming
and costly. From the early stages of design through clinical trials
to final production, discovering that a particular mAb candidate
is unsuitable for therapeutic use can result in significant resource
waste. Therefore, employing protein computational simulations
in the mAb development process is desired to mitigate the time
and cost of developing antibody drugs.*™°

Computational modeling and simulation, encompassing a
diverse range of techniques, are pivotal in understanding,
predicting, and optimizing various aspects of mAbs. These
computational methods are crucial throughout the design,
development, and analysis stages of mAbs, with molecular
dynamics (MD) simulation standing out as a key technique in
drug discovery and design processes.”® MD simulation plays an
essential role in identifying binding sites, refining virtual
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screening methods, and predicting ligand binding energies,
thereby facilitating a deeper understanding of mAbs’ behavior
and interactions.”'® Brandt et al. demonstrated the application
of MD simulation in tandem with continuum hydrodynamics
modeling and experimental diffusion measurements to validate
the conformational and hydrodynamic behavior of human
Immunoglobulins G1 (IgGl) mAbs in aqueous solutions."'
Similarly, Zamolo et al. explored the interaction of supported
affinity ligands with mAbs through MD simulation, highlighting
its utility in probing the nuances of ligand-mAb interactions.'”
Lapelosa et al. employed MD simulations to elucidate the mAb-
mADb association, shedding light on the aggregation process of
mAbs and contributing to the development of strategies to
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Figure 1. Flowchart of the research methods, using (A) MD simulations and (B) deep learning model (DeepSP) to generate the features for machine

learning models training.

mitigate unwanted aggregation.” The integration of laboratory
techniques with MD simulations presents a holistic approach to
understanding the intricate protein—protein interactions within
concentrated mAbs solutions, underlining the indispensable role
of computational methods in advancing mAbs research and
development.

Molecular modeling enables the prediction of mAbs
structures when experimental structures are not available."
Several mAb modeling tools have been recently developed for
three-dimensional structure prediction. ABodyBuilder,"* an
advanced and automated antibody modeling pipeline, enhances
the prediction accuracy of antibody structures. It provides data-
driven accuracy estimates and identifies potential sequence
liabilities, facilitating further studies for mAbs. Phillips et al.
offered comprehensive guidelines for mAbs using molecular
modeling and MD simulations, providing a valuable protocol for
understanding the protein modeling and the formulation of
mAbs."> Computational modeling of mAbs can bridge the gap
between experimental methods to probe the microscopic and
transient molecular interactions. These computational ap-
proaches accelerate the process of mAb development by offering
insights and predictions that complement experimental findings.

Machine learning has been increasingly applied in various
stages of mAb development, from discovery to clinical
development. Derek et al. proposed a method for predicting
the antigen specificity of antibodies from their sequence using
deep learning.'® Lai et al. implemented machine learning to
predict mAb aggregation and viscosity for high-concentration
formulation development, using solvent-accessible surface area
(SASA)," spatial aggregation propensity (SAP),"® and spatial
charge map (SCM)'® derived from MD simulations as
features.”””' In addition, the TAP: Therapeutic Antibody
Profiler web server was utilized to predict the antibody
developability.”* Machine learning techniques can also be used
to predict the pharmacokinetics and pharmacodynamics
properties of mAbs, helping to understand how mAbs behave
in the human bocly.23’24 In short, machine learning approaches
provide a breadth of applications in mAb development,
highlighting its role in accelerating discovery, improving safety
and efficacy, and reducing the time and cost of bringing new
therapies to market.

Jain et al. prepared 137 clinical-stage antibodies, including 48
approved for therapeutic use, to construct isotype-matched
IgG1 antibodies.”® They assessed 12 biophysical property assays
that provided insights into the distribution of biophysical
metrics relevant to the “developability” of antibodies. The term
“developability” for mAbs refers to the set of criteria and
assessments used to evaluate and optimize the physical,
chemical, and biological properties of mAbs to ensure they are
stable for development as therapeutic agents. This includes their
manufacturability, stability, solubility, safety, and efficacy. Jain’s
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data set has been utilized by several studies for various
applications. For instance, a sequence-based tool driven from
standup monolayer adsorption chromatography (SMAC), salt-
gradient affinity-capture self-interaction nanoparticle spectros-
copy (SGAC-SINS), and hydrophobic interaction chromatog-
raphy (HIC), called SSH*® was developed to predict the
hydrophobicity of mAb. Furthermore, structure-based predic-
tive models were devised to assess two crucial biophysical
properties: hydrophobicity and polyspecificity. Waibl et al.
introduced a purely physics-based approach to predict the
hydrophobic behavior of mAbs, relying on a localized
description of the free energy of hydration.”” In addition,
Hebditch and Warwicker utilized 35 sequence features derived
from the variable regions (Fv) of mAbs, including the standard
20 amino acid propensities, 7 composite scores of amino acids,
and additional features like folding and disorder propensities,
beta-strand propensities, and sequence entropy.”® They
developed machine learning models based on these sequence
features to predict 12 biophysical properties of 137 mAbs.

In this study, we collected the Fv sequences for the 137 mAbs
and experimental data for 12 biophysical properties obtained
from Jain et al. We aim to develop predictive models for these 12
properties using machine learning approaches. We employed
two methods to construct the predictive models, as depicted in
Figure 1. In Figure 1A, full-length mAb structures were built
using the homology model of the Fv structures from
ABodyBuilder and a template full-length IgG1 structure. The
features, SCM and SAP (The formulas are provided in the
Supplementary document), required for training the machine
learning models were obtained and calculated from MD
simulations. However, this approach is not suitable for high-
throughput analysis due to the time-consuming MD simulations
of the full-length structures needed to obtain features for
machine learning training. To address this issue, we utilized a
deep learning model, DeepSP,” developed by our group to
predict the SAP and SCM scores directly from the Fv sequences
(Figure 1B). In this study, we built 12 predictive models for
these biophysical properties from the MD-based and the
DeepSP features, resulting in 24 models. We compared the
performance of these models with published papers and found
that our models exhibit improved performance. The codes,
parameters, and models are freely available at https://
github.com/Lailabcode/AbDev. In addition, the webapp,
AbDev, for 12 biophysical properties prediction has been
developed and deployed on https://devpred.onrender.com/
AbDev.

B MATERIALS AND METHODS

Data Collection. Jain et al.”> provided a panel of 12
biophysical properties that are related to antibody develop-
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ability, including (1) HEK Titer, (2) Fab melting temperature
by differential scanning fluorimetry (DSE/Tm), (3) salt-
gradient affinity-capture self-interaction nanoparticle spectros-
copy (SGAC), (4) hydrophobic interaction chromatography
(HIC), (S) standup monolayer adsorption chromatography
(SMAC), (6) slope of accelerated stability (AS), (7) poly
specificity reagent (PSR), (8) affinity-capture self-interaction
nanoparticle spectroscopy (ACSINS), (9) cross-interaction
chromatography (CIC), (10) clone self-interaction by biolayer
interferometry (CSI), (11) ELISA and (12) baculovirus particle
(BVP) have been recently published for 137 clinical to marketed
mAbs. ACSINS and CSI are used to assess antibody self-
interaction. PSR, BVP, CIC, and ELISA are measured to
evaluate cross-interaction (off-target binding). Other parame-
ters are commonly used biophysical characterization metrics in
the lab. In the data set of 137 mAbs, light chain types were
categorized into kappa and lambda subtypes. Specifically, 124 of
the mAbs had kappa light chains, while 13 of the mAbs had
lambda light chains. Due to this significant imbalance in the
distribution of the kappa and lambda subtypes, it was
challenging to come to a meaningful conclusion regarding
potential correlations between light chain type and biophysical
properties.

Data Preprocessing. From the data set provided by Jain et
al., we observed that uneven distribution of certain experimental
data can lead to the overfitting of machine learning models.*
Training machine learning models on highly unevenly
distributed data may result in issues predicting data that is
either too large or too small in subsequent analyses. First, we
removed some of the outliers from the data set. For instance, in
the context of HIC, which measures the retention time of mAb
in columns to calculate their hydrophobicity, two mAbs,
lirilumab and nimotuzumab, were unable to flow out of the
column within the designated time during the experiments. As a
result, these two data points were removed from the data set.
Therefore, we utilized the remaining 135 data points to establish
predictive models for HIC. Similarly, for AS, CIC, and SMAC,
we removed 1, 2, and 3 data points, respectively. To make our
data more closely resemble a normal distribution, we utilized the
QuantileTransformer() function from the sklearn.preprocessing
module. This transformation was applied to the data from
SMAC, CIC, ACSINS, and CS], ensuring that their distributions
followed a normal distribution. As for SGAC, we calculated its
mean and standard deviation and then normalized the original
data by subtracting the mean and dividing it by the standard
deviation. While this approach may result in values that no
longer hold direct physical meaning, the predicted values
ultimately remain comparable. The results of the experimental
data preprocessing are shown in Figure SI.

Molecular Modeling of mAb. In this research, full-length
sequence modeling of 137 mAbs was constructed for the
following MD simulations. The mAb molecules were built
according to the methodology outlined by Brandt et al."' The Fv
structures of the 137 mAbs were generated through homology
modeling using ABodyBuilder, and these Fv regions were then
aligned onto a full-length IgG1 template, derived from the KOL/
Padlan®"** model that matches the light chain types to construct
the complete mADb structures. The information on the Fv and the
type of light chains were provided in Jain’s work, and the
glycosylation patterns specific to each mAb were then modeled
employing the GOF structure. Also, we used the IMGT
numbering definition to assign residue positions in mAbs,
allowing for precise identification of disulfide bond locations.
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For example, in abituzumab, the disulfide bond positions are
H22-H96, H'22-H'96, H145—H201, H'145-H'201, H221-
L214, H227-H'227, H230—H230, H262—-H322, H'262-
H’322, H368—H426, H’'368-H'426, 123-188, L23-L’88,
L135-L195, L’135-L'195 following IMGT numbering system.
Here, H and L’ represent the disulfide bonds in the other heavy
and light chains, respectively. These disulfide bonds were
modeled to maintain structural integrity in both the heavy and
light chains, as well as across the heavy chain domains. The IgG1
constant region served as the template for modeling, ensuring an
accurate representation of the disulfide bonds during molecular
dynamics simulations.

Molecular Dynamics (MD) Simulations. MD simulations
were set up using all-atom structures with explicit solvents,
employing the TIP3P water model. We used VMD to place a
single antibody in a water box™ extending 12 A beyond the
protein surface.”® We implemented the NPT ensemble to
maintain the temperature and pressure at 300 K and 1 atm,
respectively, using the NAMD software package with the
CHARMM36m force field.*>™*” To mimic the experimental
conditions, the system pH value was adjusted to 7.3 using
PROPKAS3 protocol to assign the protonation states of histidine
residues. Electrostatic interactions were calculated via the
Particle Mesh Ewald (PME) method, while van der Waals
interactions were computed with a switching distance of 10 A
and a cutoff of 12 A. Integration time step was set to 2 fs.
Preceding production runs, each mADb system underwent a 10 ns
pre-equilibrium phase, followed by S0 ns of production runs.
The production results were then used to calculate the SAP and
SCM as the features for machine learning model training.

Deep Learning Model (DeepSP) for SAP and SCM
Prediction. In this work, due to the extensive computational
time and resources required for obtaining features necessary for
training machine learning models using MD simulations, we
have also employed a deep learning tool called DeepSP,
developed from our previous work.” DeepSP can directly
predict the SCM and SAP values for each domain of mAb solely
by providing the variable region amino acid sequence. By
following the instructions provided at https://github.com/
Lailabcode/DeepSP, we can obtain the 30 SAP or SCM values in
different regions in seconds for all 137 mAbs. In Figure S2, we
compared the results calculated from MD simulations and
DeepSP. Our findings indicate that DeepSP can predict the SAP
and SCM values with both speed and accuracy.

Features Selection for Machine Learning. For the
machine learning training, we utilized the SAP and SCM values
extracted by DeepSP and MD simulation for each region,
resulting in a total of 30 features. However, due to the limited
data set size, there is a risk of overfitting when dealing with
numerous features. Therefore, our initial step was to reduce the
number of features used for model training,

In this study, our objective was to perform feature selection
for predictive modeling using various regression algorithms in
conjunction with the ExhaustiveFeatureSelector() from the
mlxtend library.”® We systematically evaluated different feature
subsets based on the negative mean squared error as the scoring
metric, varying the number of features and cross-validation folds.
Subsequently, we calculated the mean squared error (MSE) for
specific feature subsets identified by the Exhaustive Feature
Selector (EFS). For each subset, MSE was computed using
different regression models within a repeated 4-fold cross-
validation framework.

https://doi.org/10.1021/acs.molpharmaceut.4c00804
Mol. Pharmaceutics 2025, 22, 142—153


https://pubs.acs.org/doi/suppl/10.1021/acs.molpharmaceut.4c00804/suppl_file/mp4c00804_si_001.pdf
https://github.com/Lailabcode/DeepSP
https://github.com/Lailabcode/DeepSP
https://pubs.acs.org/doi/suppl/10.1021/acs.molpharmaceut.4c00804/suppl_file/mp4c00804_si_001.pdf
pubs.acs.org/molecularpharmaceutics?ref=pdf
https://doi.org/10.1021/acs.molpharmaceut.4c00804?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Molecular Pharmaceutics pubs.acs.org/molecularpharmaceutics

(A) BEos o. 0.4 0.2 oo g8

SAP_pos

g

SCM ne

SCM pos

(

SAP pos &

g

SCM ne

SCM pos

— N ™ =
=== =R =R T R ==}

SAP pos SCM neg SCM pos

Figure 2. Correlation heatmap of features from (A) MD simulations and (B) DeepSP across antibody domains for machine learning models training.
HI refers to CDRH1, H2 to CDRH2, H3 to CDRH3, L1 to CDRL1, L2 to CDRL2, and L3 to CDRL3. The correlation values represented in the
heatmaps are provided in the supplementary file: HeatMap_ SLxlsx.

Finally, we compiled detailed information on all subsets and fold cross-validation, our approach enables the identification of
their associated averaged MSE values, ultimately selecting the optimal feature subsets and the assessment of model perform-
feature combination with the smallest MSE value to train the ance. This iterative process enhances the robustness and
machine learning model. By integrating feature selection with interpretability of regression models, facilitating informed
machine learning model evaluation using EFS and repeated k- decision-making in predictive modeling tasks.
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Table 1. Best 3-Feature and 4-Feature Combinations From 4-Fold Cross-Validation with the Lowest MSE for ELISA Using

DeepSP Features”

Regression Models 3-features
KNN SAP_pos_CDRH3
SCM_pos_CDR
SCM_neg_CDR
LR SCM_neg_ CDR
SCM_pos_CDRL2
SCM_pos_CDR
RF SAP_pos_CDRH2
SAP_pos_CDRH3
SCM_pos_CDR
SVR SAP_pos_CDRH3

SCM_pos_CDR
SCM_neg_CDRLI1

MSE
4.711

MSE
4.579

4-features

SAP_pos_CDRHI1
SAP_pos_CDRH3
SCM_neg_CDRH3
SCM_pos_CDR
SCM_neg_CDRH1
SCM_neg_CDRL3
SCM_pos_Lv
SCM_pos_CDR
SAP_pos_CDRH2
SAP_pos_CDRH3
SCM_neg_Fv
SCM_pos_CDR
SAP_pos_CDRH3
SCM_neg_CDR
SCM_neg_CDRLI1
SCM_pos_CDR

5.937 5.058

5.377

5.316

5.884 5.958

“The feature selection results for other physical properties and the MD are shown in Tables S1-23.

Machine Learning Models for Biophysical Properties
Prediction. In this study, we employed machine learning
protocols sourced from the scikit-learn library,”” encompassing
linear regression (linear_model.LinearRegression()), k-nearest
neighbors regression (neighbors.KNeighborsRegressor()), support
vector regression (svm.SVR()), and random forest regression
(ensemble.RandonForestRegressor()) models for our machine
learning training.

To optimize the performance of machine learning models, we
conducted parameter tuning for each regression algorithm and
selected the best parameters based on correlation coefficient
values (r) and MSE values. For k-nearest neighbors (KNN)
regression, we varied the number of neighbors fromn=2ton =
8. For support vector regression (SVR), we explored a range of
parameters, adjusting C from 0.1 to 15.0 and & from 0.1 to 10.0.
Additionally, for random forest (RF) regression, we adjusted the
maximum depth from 2 to 6. In addition to parameter tuning, we
considered the number of features used for machine learning
training. Initial testing revealed that using only 1 or 2 features did
not yield satisfactory model performance. Therefore, we utilized
aminimum of 3 features and up to 5 features to train the models,
balancing model performance with training time.

Due to the limited data set, we employed the Leave-One-Out-
Cross-Validation (LOOCV) method, a commonly used
technique for assessing model reliability in such circum-
stances.”” With 137 data sets available, each iteration of
LOOCYV involved training machine learning models on 136
data sets and using the remaining 1 data set for validation. This
process was repeated 137 times to obtain 137 prediction values.
In our analysis, we anticipated that the correlation coefficient
and MSE from LOOCV would likely decrease compared to
machine learning models built from all data sets. To assess the
reliability of our machine learning models, we established a
threshold. If the difference between the coeflicient of
determination (R*) of the training and LOOCV was less than
0.3, we deemed the models to be reliable.

B RESULTS

Correlation of the Features from MD Simulations and
DeepSP. In this research, we used a total of 30 antibody-specific
surface descriptors as features: SAP, SCM_neg, and SCM_ pos.
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These properties were calculated across 10 mAb domains,
including CDRH1, CDRH2, CDRH3, CDRL1, CDRL2,
CDRL3, all CDR, Hyv, Lv, and Fv. We calculated these features
using MD simulations and the DeepSP surrogate model for the
137 mAbs. In Figure 2, the heatmap depicts the correlation of
SCM_pos, SCM_neg, and SAP across antibody domains from
DeepSP predictions.

First, comparing the results from MD simulations (Figure 2A)
and DeepSP (Figure 2B), we observe a similar distribution of
correlation coefficients in both heatmaps, indicating that
DeepSP predictions are consistent with MD-derived features.
In Figure S2, we note that the worst correlation is SAP_pos_Fv,
with a correlation coefficient of 0.6, while the remaining
predictions exhibit correlation coefficients of 0.7 or higher (21
out of 30 properties >0.85). The calculation time for DeepSP is
much less (a few seconds for all 137 mAbs).

For the result from MD simulations, Figure 2A shows that the
correlations of SAP in each domain with SCM pos and
SCM_neg range from —0.21 to 0.31; for the result from
DeepSP which shown in Figure 2B, the correlations of SAP in
each domain with SCM_pos and SCM_neg range from —0.24
to 0.44. The results from MD simulations and DeepSP both
indicate a weak correlation. Moreover, we also observe a general
negative correlation between SCM_pos and SCM_neg.
Regarding the correlation of SAP in individual domains, we
find that the SAP_pos CDRH3 exhibits relatively high
correlations with SAP_pos_CDR, SAP_pos Hv, and SAP_-
pos_Fv, with correlations of 0.66, 0.78, and 0.52, respectively.
For the result from DeepSP, the correlation coefficients are 0.65,
0.70, and 0.51, respectively. Regarding the correlation of
SCM_neg in individual domains, we find that the correlation
of CDRH3 has a weak correlation with other individual CDR
domains. For example, the correlation between
SCM_neg CDRH3 and SCM_neg CDRHI and the correla-
tion between SCM_neg_ CDRH3 and SCM_neg_CDRH2 is
from 0.12 to 0.26 for MD-based features (around 0.2 for
DeepSP-based features). SCM_neg CDR exhibits higher
correlations with other SCM_neg regions, ranging from 0.40
to 0.93 for MD-based features (from 0.46 to 0.95 for DeepSP).
On the other hand, SCM_neg Hv shows weak correlations with
regions located in the light chain of the mAb. Similar patterns
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can also be observed in SCM_ pos. The diversity of the features
that capture different physical properties is advantageous for
machine learning models because excessively similar features
can impede the effectiveness of model training."'

Feature Selection for Machine Learning. With a limited
data set, using all 30 features to train machine-learning models
can easily lead to overfitting. Therefore, we determined the
optimal number of features for machine learning model training
using exhaustive feature selection. From preliminary testing, we
could not establish predictive models with good performance
using fewer than 2-feature combinations. However, extracting S
features exhaustively would result in as many as 142506
combinations, significantly increasing computation time for
feature selection. Therefore, we used at least 3-feature and at
most S-feature combinations for subsequent machine learning
model training. In Table 1, using ELISA as an example, we
calculated MSE using 4-fold cross-validation under different
regression algorithms and feature combinations. The combina-
tions with the lowest MSE values were chosen for subsequent
machine learning model training. For instance, the KNN
regression model yielded the lowest MSE (4.711) using the 3-
feature combination of SAP_pos_ CDRH3, SCM_pos_CDR,
and SCM_neg CDR and yielded the lowest MSE (4.579) using
the 4-feature combination of SAP_pos CDRHI, SAP -
pos_ CDRH3, SCM_neg_CDRH3, and SCM_pos_CDR.

Machine Learning Models for 12 Biophysical Proper-
ties Prediction. We identified the best feature combinations
from the feature selection process for building predictive models
of 12 biophysical properties. The features were selected from the
DeepSP method and MD simulations. Hence, in this study, a
total of 24 machine-learning models were evaluated for their
performance. Among them, ELISA prediction showed the best
result, with the MD model exhibiting a correlation coefficient (r)
of 0.89 and MSE of 1.50, while the DeepSP model achieved an r
of 0.85 and MSE of 1.97 (Figure 3). Furthermore, Figure 3
includes the results of Leave-One-Out-Cross-Validation
(LOOCYV), a valuable tool for assessing model performance in
small data sets. The MD model showed an r of 0.73 and MSE of
3.26, whereas the DeepSP model had an r of 0.66 and MSE of
3.98. For the ELISA predictive model, the best-performing
model was achieved using the KNN regression algorithm with a
parameter k-nearest neighbors value of k = 3. This model utilized
3 features, SAP_pos CDRH3, SCM pos CDR, and
SCM_neg_CDR, extracted using the exhaustive selection
method. Comparing the MSE before and after parameter
tuning, we observed a significant reduction in MSE values. In
Figure 3 and Table 1, the MSE value decreased from 4.711 to
1.50 (for MD_all), 3.26 (for MD_LOOCV), 1.97 (for
DeepSP_all), and 3.98 (for DeepSP_LOOCYV) after parameter
tuning. The performance of the remaining 11 models is depicted
in Figure S3 (DeepSP) and Figure S4 (MD simulations).

Comparing Table 2 with Tables S1—11, S24, and $12—23, we
noticed that for both the MD and DeepSP features, the MSE
values decreased after tuning the parameters with the selected
features, except for the predictive models of AS. For the
predictive models of AS, we encountered challenges in
establishing reliable model performance. In the result from
DeepSP, the highest correlation coeflicient obtained was 0.27,
while in the LOOCYV, the correlation coefficient was 0.08
(Figure S3). For MD-based features, the best model achieved a
correlation of 0.21.

In evaluating the performance of the machine learning models
across the 12 biophysical properties, we observed that while the
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Figure 3. Correlation coefficients for the 3-feature k-nearest neighbors
(KNN) models trained using the entire data set of 137 samples with
LOOCYV for ELISA predictions. (A) the machine learning model
training using features extracted from MD simulations; (B) the machine
learning model training using features extracted from DeepSP. The
hyperparameters of this model were set to k = 3.

models performed well for several properties (e.g., ELISA, HIC,
BVP), their predictive performance for AS was notably lower.
Specifically, the correlation coefficient for AS remained low in
both the MD and DeepSP models, and the models struggled to
capture meaningful patterns. Upon further examination, we
hypothesize that the weaker performance for AS may be
attributable to the unique characteristics of the assay and the
complexity of the biophysical mechanisms it measures. AS
measures the stability of monoclonal antibodies under
accelerated conditions, often capturing subtle and multifactorial
changes in conformation and aggregation propensity that may
not be fully captured by the surface properties (such as
hydrophobicity and charge) used as features in our models.
Furthermore, the AS assay likely involves factors beyond the
direct molecular surface descriptors used in the models, such as
internal protein conformational stability, disulfide bond stability,
or solvent interactions under stress conditions. These factors
may contribute to AS results not following the trends observed
for other biophysical properties, such as HIC or SGAC, which
are more directly influenced by surface charge and hydro-
phobicity. This suggests that additional features, possibly
capturing intramolecular interactions or protein flexibility,
could be required to improve the model’s ability to predict AS
with greater accuracy.

Additionally, even in the LOOCYV, positive r values were not
attained (Figure S4). The 12 models represent various
properties that have different units and scales. Therefore, we
normalized the MSE values into the Normalized Mean Squared
Error (NMSE) and summarized them in Table 2. We found that
better model performance, which has a higher correlation, aligns
with lower NMSE. In Table 3, we summarize the performance of
machine learning models for the 12 properties, using MD and
DeepSP features, along with the model developed by Hebditch
and Warwicker.”® The MD or DeepSP models provide better
predictions for protein binding and hydrophobicity properties,
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Table 2. Performance Comparison of Machine Learning Models and Their LOOCYV for Predicting 12 Biophysical Properties of

mAbs using Different Feature Sets from DeepSP*”

Properties Best model performance

ACSINS

AS

BVP

CIC

CSI

ELISA

HIC

HEK

PSR

SGAC

SMAC

Tm

SVR

LR

KNN

KNN

SVR

KNN

SVR

SVR

SVR

KNN

KNN

Feature

SAP_pos_CDRHI1
SAP_pos_CDRL3
SCM_pos_CDRHI1
SCM_neg_CDR
SAP_pos_CDRH2
SCM_pos_CDRL2
SCM_pos_CDRL3
SCM_neg_CDRL3
SAP_pos_CDRH1
SAP_pos_CDRH3
SCM_pos_CDR
SCM_neg_CDRH3
SAP_pos_CDRL2
SAP_pos_CDRL3
SAP_pos_Lv
SCM_neg_CDR
SAP_pos_CDRLI1
SAP_pos_Lv
SCM_pos_CDRH2
SCM_neg_CDRL2
SAP_pos_CDRH3
SCM_pos_CDR
SCM_neg_CDR
SAP_pos_CDRL3
SAP_pos_CDR
SAP_pos_Hv
SCM_pos_CDRH3
SAP_pos_CDRH2
SAP_pos_CDRL3
SCM_pos_Lv
SCM_neg_Lv
SAP_pos_Lv
SCM_pos_CDRH2
SCM_neg_CDRL2
SAP_pos_CDRH1
SAP_pos_CDRL3
SCM_neg_CDRH2
SCM_neg_Lv
SAP_pos_CDR
SAP_pos_Fv
SCM_neg_CDRL2
SCM_neg_Fv
SAP_pos_CDRHI1
SAP_pos_CDRH2
SCM_pos_CDRH3

MSE/NMSE (All data)

0.690/4.16 X 1072

0.003/3.16 X 1072

6.43/1.36 X 1072

0.570/2.88 X 1072

0.88/4.81 x 1072

1.97/1.07 X 1072

0.56/2.06 X 1072

2236.53/3.05 X 1072

0.02/3.05 X 1072

0.52/5.30 X 1072

0.61/2.58 X 1072

20.78/2.03 X 1072

MSE/NMSE (LOOCYV)

1.00/6.03 X 1072

0.003/3.16 X 1072

11.95/2.53 x 1072

0.80/4.04 X 1072

1.08/5.90 X 1072

3.98/2.16 X 1072

0.81/2.98 X 1072

3367.50/4.60 x 1072

0.03/4.57 X 1072

0.82/8.36 X 1072

0.87/3.68 X 1072

29.04/2.84 X 1072

“The feature sets from MD simulations are shown in Table $24. *NMSE: Normalized Mean Squared Error.

such as ELISA, HIC, and BVP. This is closely related to the
features we used because SCM and SAP represent the surface
charge and hydrophobic distribution of mAbs, which in turn
affect their hydrophobicity and aggregation propensity.*>*> On
the other hand, some properties related to AS and Tm, which are
related to conformational stability, cannot be predicted
accurately. In Jain et al. study, Tm was measured using
differential scanning fluorimetry (DSF), which monitors
thermal unfolding as hydrophobic regions are exposed and
bind to fluorescent dyes. Therefore, Tm reflects the thermal
unfolding mechanism leading to conformational changes and
stability. Given SAP and SCM features primarily describe
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surface properties, they may not be ideal for predicting
properties related to conformational stability. Furthermore, we
compared our models with those of Hebditch and Warwicker.**
In Hebditch’s work, amino acid sequence-based features were
utilized to construct 12 ML models for the prediction of
biophysical properties. Their methodology includes experimen-
tal data transformation and subsequent feature selections based
on the Variance Inflation Factor (VIF). Their study employed
cross-validation (S0 times repeated 10-fold) to estimate the
models’ performance on unseen data. Both our work and
Hebditch’s study use the same 137 mAbs data set, which was
originally provided in the Jain et al. study. Generally, the
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Table 3. Summary of Machine Learning Results (R?) for 12 Physical Properties Prediction“”

MD HIC SMAC* CIC ACSINS* ELISA
Algorithm KNN SVR SVR SVR KNN
R*(Model) 0.640 0.578 0.462 0.490 0.792
R*(LOOCYV) 0.384 0.348 0.303 0212 0.533
DeepSP
Algorithm SVR KNN KNN SVR KNN
R*(Model) 0.533 0.548 0.476 0.464 0.723
R*(LOOCYV) 0.325 0.348 0.260 0.230 0.436
Hebditch group™®
Algorithm EN EN SVR EN RF
R*(Model) 0.391 0.353 0.306 0.268 0.383

BVP SGAC* PSR HEK Tm CSI* AS
SVR KNN SVR RF SVR SVR LR
0.656 0.476 0.533 0.476 0.194 0.449 0.044
0.436 0.194 0.314 0.185 0.084 0.203 —0.05
KNN SVR SVR KNN KNN SVR LR
0.548 0.476 0.476 0.423 0.397 0.314 0.073
0.360 0.176 0.292 0.137 0.160 0.160 0.006
RF SVR SVR SVR SVR SVR SVR
0.355 0.215 0.316 0.112 0.130 0.169 0.086

“KNN: k-nearest neighbor; SVR: support vector regression; RF: random forest; LR: linear regression; EN: elastic net. YThe asterisk represents that

the models are trained by transformed experimental data.

performance of these models is good, though some variability is
noted across different biophysical techniques. The performance
metrics provided in the study are based on the entire data set
rather than a separate validation set, as there is no explicit
mention of a validation group in their results tables. This
suggests that the reported model performance metrics are likely
for the overall model performance on the complete data set. In
our research, we find that, whether using features from MD
simulations or from DeepSP, the machine learning models
trained on the entire data set show performance that, except for
AS prediction, have R? values exceeding those of Hebditch’s
models. For example, the R? values for the HIC models were
0.640 (MD) and 0.533 (DeepSP), respectively. The HIC model
from Hebditch et al, using the whole data to train, has an R?
value of 0.391. We observed that even our validation test for
several properties performed better than Hebditch’s models,
which used the entire data set for training.

Mechanistic Insight of the Machine Learning Fea-
tures. Understanding the correlation between selected features
and these 12 biophysical properties can enhance our
comprehension of their physical significance. In Figure 4, the
heatmaps display the correlation coefficients between each
feature, derived from (A) MD simulations and (B) the DeepSP,
and the 12 properties. It is evident from these figures that the
features from MD simulations and results from DeepSP are
similar, showing a comparable pattern in the correlation
coefficients. This similarity suggests that the DeepSP model
can predict results similar to those obtained from MD
simulations.

Protein aggregation propensity is driven by hydrophobicity;
therefore, for hydrophobicity properties (HIC, SMAC, SGAC),
numerous SAP features were selected from MD and DeepSP
features. It is observed that domains in the heavy chain have high
correlation coefficients with these three hydrophobicity-related
properties. The highest is MD-derived SAP_pos_CDR (0.38),
although it was not used in the subsequent MD-based machine
learning model building. This is because other feature
combinations of the SAP domain achieved better results in
our feature selection methodology, and the combination
performs better than a single feature.

The correlations of SGAC, SMAC, and HIC with the SAP
features are closely aligned. However, the SGAC data exhibit a
reversed correlation pattern relative to HIC and SMAC. Lower
SGAC indicates increased hydrophobicity, contrasting with the
positive correlations observed in HIC and SMAC, where higher
values indicate greater hydrophobicity.

149

(A) SAP_pos

ST L]
HEK]
e il 0

SMAC]
SGAC] N ]

BVP| L]

ELISA|

PS L]
csl| ]
ACSINS| N

SCM_pos SCM_neg

Figure 4. Correlation heatmap of the features from (A) MD
simulations and (B) DeepSP across antibody domains with 12
biophysical properties. Red boxes represent the feature combinations
for the best machine-learning models for each property. HI refers to
CDRHI1, H2 to CDRH2, H3 to CDRH3, L1 to CDRL1, L2 to CDRL2,
and L3 to CDRL3. The correlation values represented in the heatmaps
are provided in the supplementary file: HeatMap_SI.xlsx.

Regarding binding-related properties (ELISA, BVP), these
properties also demonstrated the best performance in predictive
model development in this study. For BVP models, regardless of
whether the features are from MD simulations or DeepSP,
SCM_pos_CDRH3 and SCM_pos_CDR both show high
correlation coefficients with BVP, at 0.54 (MD simulations)
and 0.47 (DeepSP), and 0.54 (MD simulations) and 0.49
(DeepSP), respectively. Although both SCM_pos CDRH3 and
SCM_pos_CDR show a high correlation with BVP, only
SCM_pos_CDR was ultimately selected because CDRH3 is
included within CDR, thus BVP models only use
SCM_pos_CDR combined with other features with lower
correlation coeflicients to further improve the performance. A
similar scenario occurred in the building of ELISA predictive
models.
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In terms of self/ cross-interaction related properties (ACSINS,
CSI, PSR, CIC), we find that SCM_pos and SCM_ neg exhibit
strongly positive or negative correlations with these properties,
respectively. In contrast, the correlation of SAP features with
these properties does not exhibit distinct patterns compared
with SCM_pos or SCM_neg. Charge distribution often has a
more significant impact on mAb’s self-and cross interactions
than hydrophobicity, as charge directly influences the electro-
static forces between molecules, which play a critical role in
biomolecular interactions.”*** Dividing these four properties
into self-interaction (ACSINS, CSI) and cross-interaction
groups (PSR, CIC), it is evident that self-interaction-related
properties are more influenced by SCM_ neg, with high negative
correlations such as —0.34 (MD simulations), and —0.38
(DeepSP) for ACSINS, and —0.33 (MD simulations), and
—0.32 (DeepSP) for CSI. The increased surface negative charge
on mAbs reduces self-interaction due to repulsive forces. For
cross-interaction-related properties, SCM_pos has a more
substantial influence, showing that the strongest correlations
are the positive correlation of 0.40 (MD simulations) and 0.39
(DeepSP) for PSR, respectively.

Cross-interaction assay, including ELISA, BVP, CIC, PSR,
measured the potential for antibodies to bind nonspecifically to
off-target molecules. As noted in a recent review, nonspecific
interactions are often driven by surface patches—clusters of
exposed amino acid residues with similar physicochemical
properties, such as positive charge, which promote nonspecific
binding to negatively charged targets.* The overall positive
charge correlates with nonspecific binding in these assays due to
the attraction of the positively charged surface patches to
negatively charged ligands. In contrast, self-interaction assays,
such as CSI and ACSINS, capture interactions between identical
antibody molecules. These interactions are influenced by both
repulsive and attractive electrostatic forces. Strong positive or
negative charges on the surface can either enhance repulsion or
encourage binding, leading to the observed strong absolute
charge correlations for self-interactions. This aligns with the
understanding that uneven charge distributions, such as charged
surface patches, can promote self-association and nonspecific
binding.

Lastly, regarding properties like Tm, HEK, and AS, it is
challenging to find a pattern among our current features, as these
properties are more closely related to conformational stability
and intramolecular interactions, not intermolecular interactions.
Tm is affected by intramolecular hydrogen bonds, disulfide
bonds, and ionic bonds.*” ™ For HEK titer, expression levels
are influenced by variations in certain amino acid sequences,
particularly signal sequences and N-terminal sequences.”””" AS,
a key assay for assessing the long-term aggregation tendencies of
mAbs, effectively evaluates their stability. Importantly, the
amino acid composition and the interactions between amino
acids of mAbs significantly influence the results of this
assay.””~>° Additionally, in Jain’s study, a low concentration
condition (1 mg/mL) was used for accelerated stability testing.
However, at such a low concentration, the mAb may not exhibit
the full range of stability behaviors seen at higher concentrations,
potentially leading to different aggregation or degradation
profiles. The lack of interactions at low concentrations may
result in the poor prediction of our models. These specific
sequences can greatly improve the flexibility and stability of
mAbs, impacting their overall performance in the AS test. The
features used in this work describe the surface hydrophobicity
and charge distribution, which shows better prediction for
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intermolecular interactions. Future work will include more
features to describe intramolecular interactions and conforma-
tional stability.

Web Application Development and Models Code
Source. We have integrated the predictive models for these
12 biophysical properties, based on features predicted by
DeepSP, into a web application, AbDev, accessible at https://
devpred.onrender.com/AbDev. This tool is provided for use in
mADb developability research. Users simply need to input the
sequences of the light and heavy chain variable regions of a mAb.
AbDev will then provide the predicted values for these 12
biophysical properties. Moreover, since the experimental data
for S of the 12 properties—ACSINS, CSI, CIC, SGAC, and
SMAC—underwent data transformation, the resultant predic-
tions can be challenging to interpret directly. Consequently, we
employ threshold values for 10 out of the 12 experimental
platforms (excluding Tm and HEK) derived from the original
study by Jain et al.”> The threshold values for these 5 properties
are also transformed in the same manner and set as new
threshold values. Within the webapp, once the predicted results
are obtained, any values exceeding these thresholds will be
highlighted, indicating that the values do not meet the standard
and pose potential issues for the developability of the mAbs.
Furthermore, for those planning to process a large number of
mADb sequences at once, we also provide codes and scripts that
can be accessed via https://github.com/Lailabcode/AbDev.

B DISCUSSION

In this study, we constructed several machine learning models to
predict 12 biophysical properties using molecular modeling and
dynamics simulation. However, this process is time-consuming
and demands significant computational resources. The simu-
lation of a single mAb sample required approximately 20—24 h
using one NVIDIA V100 GPU. Moreover, MD simulation
results can vary due to molecular fluctuations, leading to
inconsistent outcomes. To address these challenges, our group
recently developed a deep learning model called DeepSP, which
rapidly predicts the features needed for machine learning models
by providing the sequence of the Fv regions. In previous
research, we demonstrated that the SCM and SAP values
obtained from DeepSP could effectively build machine-learning
models for predicting the high-concentration aggregation rate of
mADbs. Since the aggregation rate of mAbs is closely linked to
protein interactions arising from hydrophobicity and charge
distribution, and some of the 12 biophysical properties under
study are related to protein hydrophobic and charge
interactions, we hypothesize that using SCM and SAP as
features have the potential to construct predictive models for
these properties as well.

In terms of results, while the model performance using
features from DeepSP is slightly inferior to those using MD
features, it still produces acceptable outcomes. It is also observed
that the best feature combinations for training machine learning
models do not always include the single feature with the highest
correlation. Often, features that are highly correlated with the
target can also be highly correlated with each other, potentially
leading to multicollinearity, which can adversely affect the
models’ performance. This suggests that relying solely on the
highest correlation features is unnecessary; various feature
combinations can also successfully build models with robust
performance. Moreover, in our analysis of the models that
predicted poorly, properties such as AS, HEK, and Tm displayed
weak correlations across all features. However, we successfully
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developed predictive models with strong performance, partic-
ularly regarding mAbs binding affinity’s biophysical properties
like ELISA and BVP. Predictive models concerning mAbs self/
cross-interaction also performed well. This indicates that SAP
and SCM scores are suitable protein descriptors for these three
properties. Additionally, all 137 mAbs included in the data set
are clinical trial candidates and have been meticulously designed
to the best of our knowledge. This implies that these models lack
input data for poorly designed mAbs, which is one of the reasons
for the limited performance observed for some properties.

B CONCLUSION

In this study, we have successfully constructed and evaluated
multiple machine learning models to predict a set of 12 critical
biophysical properties of mAbs using data obtained from both
MD simulations and a novel deep learning approach, DeepSP.
The incorporation of DeepSP has significantly enhanced our
methodology, providing a faster and equally effective alternative
to MD simulations for extracting essential features required for
model training, thereby addressing the significant computational
time and resource constraints associated with MD simulations.
Our results demonstrate that the predictive models developed
herein significantly outperform existing methods, particularly in
predicting properties related to the intermolecular interactions
of mAbs, which are critical for their developability as therapeutic
agents. The successful application of machine learning,
especially the DeepSP model, highlights the potential for these
computational approaches to accelerate the development
process of mAbs by enabling rapid and accurate prediction of
SAP and SCM as the features. Moreover, the methodology
outlined in our study provides a framework for employing
computational tools in the early stages of mAb development,
thereby potentially reducing the time and cost associated with
experimental testing. It is evident that integrating machine
learning and deep learning techniques into the mAb develop-
ment process presents a promising avenue for enhancing the
efficiency and success rate of therapeutic antibody discovery and
development.

Despite the successes, certain limitations, such as the
predictive accuracy for properties related to conformational
and thermal stability, need to be addressed in future work.
Additionally, our findings underscore the importance of feature
selection and the necessity to balance model complexity and
predictive power to avoid overfitting, especially when dealing
with limited data sets. In conclusion, this study represents a
significant step forward in the application of machine learning
and deep learning methods for predicting mAb biophysical
properties. Our models provide better predictive performance
compared to previous approaches and offer a more efficient and
cost-effective solution for the early stage screening of mAbs,
thereby facilitating the development of more effective and safer
therapeutic agents.
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Figure S1 shows the experimental data distribution after
transformation, which can help visualize how the data
normalization or transformation was applied to prepare it
for more effective machine learning analysis; Figure S2
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compares the SAP and SCM values calculated from MD
simulations and those calculated from DeepSP; Figures
S3 and S4 summarize the performance of the 12 machine
learning models trained from features predicted by
DeepSP and MD simulations, respectively; Tables S1—
23 list the MSE values obtained before parameter tuning,
using different feature combinations and regression
algorithms. Table S24 lists the MSE and NMSE values
for the 12 models trained with MD simulations-based
features after parameter tuning (PDF)

Numerical values of the heatmap of Figures 2 and 4
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